
MATH2050B 1920 HW3
TA’s solutions to selected problems

Q1. Let a, b be positive real numbers. Show that a < b iff a2 < b2.

Solution. a < b iff 0 < b− a iff (b+ a)0 < (b+ a)(b− a) (i.e. 0 < b2 − a2) iff a2 < b2.

Q2. Let b, c be real numbers. Show that the quadratic equation x2 − 2bx+ c = 0 is solvable in
R iff b2 − c is non-negative.

Solution. Let f : R→ R be given by f(x) = x2 − 2bx+ c = (x− b)2 + c− b2. x ∈ R is a root
to f iff (x− b)2 = b2 − c.

If such a solution x exists in R, then b2−c = (x−b)2 ≥ 0. Conversely if b2−c ≥ 0, then there is
a real number(the square root) y with y2 = b2 − c. Then x = y+ b is a solution to the problem
f(x) = 0.

Q3. Let z, a be positive real numbers such that z2 > a. Show that there exists a natural
number m such that (1/m) < z and (z − 1/m)2 > a.

Solution. Because z > 0, therefore 1/z > 0. By Archimedean Principle, there is mz for which
mz > 1/z. Clearly m > 1/z for all m ≥ m1, so that

z >
1

m
, ∀m ≥ m1.

Because z2 − a > 0, let δ = z2 − a > 0. By Archimedean Principle, there is m2 such that
m2 > 2z/δ. Now let m be a natural number greater than m1 and m2, then z > 1/m. And
δ > 2z/m so that:

(z − 1

m
)2 − a = (z − 1

m
)2 − z2 + z2 − a

= (
1

m
)(

1

m
− 2z) + z2 − a

= (
1

m
)(

1

m
− 2z) + δ

=
1

m2
− 2z

m
+ δ

> −2z

m
+ δ > 0.

Q4. Let z, a be positive such that z2 < a. Show that there exists a natural number n such that
(z + 1/n)2 < a.

Solution. As a − z2 > 0, let δ = a − z2 > 0. By Archimedean Principle there is n such that
n > (2z + 1)/δ. This implies δ − (2z + 1)/n > 0 and so for this n we have:

a− (z +
1

n
)2 = a− z2 + z2 − (z +

1

n
)2

= δ − 2z

n
− 1

n2

≥ δ − 2z

n
− 1

n
(− 1

n2 ≥ − 1
n)

= δ − 1

n
(2z + 1) > 0.
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Q5. Let a be positive and B = {x ∈ R : x > 0, x2 > a}. Show that B is non-empty, z := inf B
exists in R. Show further that z2 = a.

Solution. B is non-empty because a+ 1 ∈ B. B is bounded below by 0 and so z = inf B exists
in R. Since 0 is a lower bound, so z ≥ 0. And z must be positive because if z = 0, then there
would be some x ∈ B with x < 1, x < a, so that x2 < 1 · a, which is a contradiction.

Now suppose on the contrary that z2 6= a, then either z2 > a or z2 < a.

If z2 > a, then (by Q3) there is some m with z − 1/m > 0 (z − 1
m)2 > a. So z − 1/m ∈ B.

Contradiction.

If z2 < a, then (by Q4) there is some m with (z + 1/m)2 < a. Then z + 1/m is a lower bound
for B strictly bigger then z. Contradiction.

So z2 = a.

Q6. Let a > 0. Similar to Q5 but use suitable set A and supA to show the existence of the
positive square root of a.

Solution. A = {x ∈ R : x > 0, x2 < a}. Because a is finite so A is bounded above. (Reason:
or else there must be some x ∈ A so that x > a+ 1. Then x2 ≥ (a+ 1)2 > a)

So z := supA exists, similar to Q5 we can show z2 = a.

Q7. Show ||x| − |y|| ≤ |x − y| ≤ |x| + |y| for all x, y ∈ R and describe when the inequality is
strict. Sketch/interpret your results geometrically.

Solution. The absolute value satisfies |x+ y| ≤ |x|+ |y| for all real x, y and |λx| = |λ| · |x| for
all real λ, x.

Since |x| = |x − y + y| ≤ |x − y| + |y|, so |x| − |y| ≤ |x − y|. Similarly |y| ≤ |x − y| + |x|, so
|y| − |x| ≤ |x− y|. Now

−|x− y| ≤ |x| − |y| ≤ |x− y|,
giving ||x| − |y|| ≤ |x− y|. For the second inequality, we have

|x− y| = |x+ (−y)| ≤ |x|+ | − y| = |x|+ |y|.

The inequality ||x| − |y|| ≤ |x − y| is strict iff x, y are of the opposite sign. The inequality
|x− y| ≤ |x|+ |y| is strict iff x, y are of the same sign.

Q8. Solve the inequality system

4 < |x+ 2|+ |x− 1| ≤ 5.

Solution. We divide the real line into three parts to see if there is any solution in each part:

• Case 1: x ≤ −2, then |x+ 2|+ |x−1| = −2−x+ 1−x = −1−2x. In this case x satisfies
the inequality iff x ∈ (−3,−5/2].

• Case 2: −2 < x ≤ 1, then |x + 2| + |x − 1| = 3. In this case there is no x satisfies the
inequality.

• Case 3: 1 < x, then |x + 2| + |x − 1| = 2x + 1. In this case x satisfies the inequality iff
x ∈ (3/2, 2].
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Thus the solution set A is [−3,−5/2) ∪ (3/2, 2].

Q9. Let y, t be real numbers. Show the following assertions:

(a) If |t| < 10 and |y − t| < 3 then |y| < 13.

(b) If t 6= 0 and |y − t| < |t|/2 then |t|/2 < |y|.

Solution. For (a), |y| ≤ |t|+ |y − t| < 3 + 10 = 13.

For (b), |y| ≥ |t| − |y − t| > |t| − |t|/2 = |t|/2.

Q10. Show by MI the binomial formula

(a+ b)n =
n∑

k=0

(
n

n− k

)
an−kbk.

And for a > 0, show that
(1 + a)n ≥ 1 + na

and

(1 + a)n ≥ n(n− 1)(n− 2)

3!
a2, ∀n ≥ 3

so
n2

(1 + a)n
→ 0 as n→∞.

Solution. When n = 0, 1, the binomial formula is clearly true. Suppose that the binomial
formula is true for n = 0, 1, 2, . . . , N . Now

(a+ b)N+1 = (a+ b)
N∑
k=0

(
N

N − k

)
aN−kbk

=

N∑
k=0

(
N

N − k

)
aN+1−kbk +

N∑
k=0

(
N

N − k

)
aN−kbk+1

=

(
N

N

)
aN+1 +

N∑
k=1

(
N

N − k

)
aN+1−kbk +

N−1∑
k=0

(
N

N − k

)
aN−kbk+1 +

(
N

0

)
bN+1

= aN+1 +

N−1∑
k=0

(
N

N − k − 1

)
aN−kbk+1 +

N−1∑
k=0

(
N

N − k

)
aN−kbk+1 + bN+1

= aN+1 +
N−1∑
k=0

[

(
N

N − k − 1

)
+

(
N

N − k

)
]aN−kbk+1 + bN+1

= aN+1 +

N−1∑
k=0

(
N + 1

N − k

)
aN−kbk+1 + bN+1

= aN+1 +

N∑
k=1

(
N + 1

N + 1− k

)
aN+1−kbk + bN+1

=

N+1∑
k=0

(
N + 1

N + 1− k

)
aN+1−kbk.
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Thus the binomial formula also holds for n = N + 1. By MI, the binomial formula is true for
all n.

To show (1 + a)n ≥ 1 + na, note 1, na are the first two terms of the binomial expansion

(1 + a)n =
n∑

k=0

(
n

k

)
ak.

Since all terms are non-negative, so (1 + a)n ≥ 1 + na.

The next ineq to be proved is (1 + a)n ≥ a2n(n− 1)(n− 2)/3!. The inequality should be

(1 + a)n ≥ n(n− 1)(n− 2)

3!
a3,

which can also be obtained from the binomial theorem.

(Fun fact: (1 + a)n ≥ a2n(n− 1)(n− 2)/3! holds iff n < 13)
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