MATH2050B 1920 HW3

TA's solutions to selected problems

Q1. Let a, b be positive real numbers. Show that a < b iff $a^2 < b^2$.

Solution. a < b iff 0 < b - a iff (b + a)0 < (b + a)(b - a) (i.e. $0 < b^2 - a^2$) iff $a^2 < b^2$.

Q2. Let b, c be real numbers. Show that the quadratic equation $x^2 - 2bx + c = 0$ is solvable in \mathbb{R} iff $b^2 - c$ is non-negative.

Solution. Let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2 - 2bx + c = (x - b)^2 + c - b^2$. $x \in \mathbb{R}$ is a root to f iff $(x - b)^2 = b^2 - c$.

If such a solution x exists in \mathbb{R} , then $b^2 - c = (x - b)^2 \ge 0$. Conversely if $b^2 - c \ge 0$, then there is a real number (the square root) y with $y^2 = b^2 - c$. Then x = y + b is a solution to the problem f(x) = 0.

Q3. Let z, a be positive real numbers such that $z^2 > a$. Show that there exists a natural number m such that (1/m) < z and $(z - 1/m)^2 > a$.

Solution. Because z > 0, therefore 1/z > 0. By Archimedean Principle, there is m_z for which $m_z > 1/z$. Clearly m > 1/z for all $m \ge m_1$, so that

$$z > \frac{1}{m}, \qquad \forall m \ge m_1.$$

Because $z^2 - a > 0$, let $\delta = z^2 - a > 0$. By Archimedean Principle, there is m_2 such that $m_2 > 2z/\delta$. Now let *m* be a natural number greater than m_1 and m_2 , then z > 1/m. And $\delta > 2z/m$ so that:

$$(z - \frac{1}{m})^2 - a = (z - \frac{1}{m})^2 - z^2 + z^2 - a$$
$$= (\frac{1}{m})(\frac{1}{m} - 2z) + z^2 - a$$
$$= (\frac{1}{m})(\frac{1}{m} - 2z) + \delta$$
$$= \frac{1}{m^2} - \frac{2z}{m} + \delta$$
$$> -\frac{2z}{m} + \delta > 0.$$

Q4. Let z, a be positive such that $z^2 < a$. Show that there exists a natural number n such that $(z + 1/n)^2 < a$.

Solution. As $a - z^2 > 0$, let $\delta = a - z^2 > 0$. By Archimedean Principle there is n such that $n > (2z + 1)/\delta$. This implies $\delta - (2z + 1)/n > 0$ and so for this n we have:

$$a - (z + \frac{1}{n})^2 = a - z^2 + z^2 - (z + \frac{1}{n})^2$$

= $\delta - \frac{2z}{n} - \frac{1}{n^2}$
 $\geq \delta - \frac{2z}{n} - \frac{1}{n}$ $(-\frac{1}{n^2} \geq -\frac{1}{n})$
= $\delta - \frac{1}{n}(2z + 1) > 0.$

Q5. Let a be positive and $B = \{x \in \mathbb{R} : x > 0, x^2 > a\}$. Show that B is non-empty, $z := \inf B$ exists in \mathbb{R} . Show further that $z^2 = a$.

Solution. *B* is non-empty because $a + 1 \in B$. *B* is bounded below by 0 and so $z = \inf B$ exists in \mathbb{R} . Since 0 is a lower bound, so $z \ge 0$. And z must be positive because if z = 0, then there would be some $x \in B$ with x < 1, x < a, so that $x^2 < 1 \cdot a$, which is a contradiction.

Now suppose on the contrary that $z^2 \neq a$, then either $z^2 > a$ or $z^2 < a$.

If $z^2 > a$, then (by Q3) there is some m with z - 1/m > 0 $(z - \frac{1}{m})^2 > a$. So $z - 1/m \in B$. Contradiction.

If $z^2 < a$, then (by Q4) there is some *m* with $(z + 1/m)^2 < a$. Then z + 1/m is a lower bound for *B* strictly bigger than *z*. Contradiction.

So $z^2 = a$.

Q6. Let a > 0. Similar to **Q5** but use suitable set A and sup A to show the existence of the positive square root of a.

Solution. $A = \{x \in \mathbb{R} : x > 0, x^2 < a\}$. Because a is finite so A is bounded above. (Reason: or else there must be some $x \in A$ so that x > a + 1. Then $x^2 \ge (a + 1)^2 > a$)

So $z := \sup A$ exists, similar to **Q5** we can show $z^2 = a$.

Q7. Show $||x| - |y|| \le |x - y| \le |x| + |y|$ for all $x, y \in \mathbb{R}$ and describe when the inequality is strict. Sketch/interpret your results geometrically.

Solution. The absolute value satisfies $|x + y| \le |x| + |y|$ for all real x, y and $|\lambda x| = |\lambda| \cdot |x|$ for all real λ, x .

Since $|x| = |x - y + y| \le |x - y| + |y|$, so $|x| - |y| \le |x - y|$. Similarly $|y| \le |x - y| + |x|$, so $|y| - |x| \le |x - y|$. Now

$$-|x-y| \le |x| - |y| \le |x-y|$$

giving $||x| - |y|| \le |x - y|$. For the second inequality, we have

$$|x - y| = |x + (-y)| \le |x| + |-y| = |x| + |y|.$$

The inequality $||x| - |y|| \le |x - y|$ is strict iff x, y are of the opposite sign. The inequality $|x - y| \le |x| + |y|$ is strict iff x, y are of the same sign.

Q8. Solve the inequality system

$$4 < |x+2| + |x-1| \le 5.$$

Solution. We divide the real line into three parts to see if there is any solution in each part:

- Case 1: $x \le -2$, then |x+2| + |x-1| = -2 x + 1 x = -1 2x. In this case x satisfies the inequality iff $x \in (-3, -5/2]$.
- Case 2: $-2 < x \le 1$, then |x + 2| + |x 1| = 3. In this case there is no x satisfies the inequality.
- Case 3: 1 < x, then |x + 2| + |x 1| = 2x + 1. In this case x satisfies the inequality iff $x \in (3/2, 2]$.

Thus the solution set A is $[-3, -5/2) \cup (3/2, 2]$.

Q9. Let y, t be real numbers. Show the following assertions:

- (a) If |t| < 10 and |y t| < 3 then |y| < 13.
- (b) If $t \neq 0$ and |y t| < |t|/2 then |t|/2 < |y|.

Solution. For (a), $|y| \le |t| + |y - t| < 3 + 10 = 13$.

For
$$(b)$$
, $|y| \ge |t| - |y - t| > |t| - |t|/2 = |t|/2$.

Q10. Show by MI the binomial formula $% \left({{\mathbf{D}}_{\mathbf{U}}} \right)$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{n-k} a^{n-k} b^k.$$

And for a > 0, show that

$$(1+a)^n \ge 1+na$$

and

$$(1+a)^n \ge \frac{n(n-1)(n-2)}{3!}a^2, \qquad \forall n \ge 3$$

 \mathbf{SO}

$$\frac{n^2}{(1+a)^n} \to 0 \qquad \text{as } n \to \infty.$$

Solution. When n = 0, 1, the binomial formula is clearly true. Suppose that the binomial formula is true for n = 0, 1, 2, ..., N. Now

$$\begin{split} (a+b)^{N+1} &= (a+b) \sum_{k=0}^{N} \binom{N}{N-k} a^{N-k} b^{k} \\ &= \sum_{k=0}^{N} \binom{N}{N-k} a^{N+1-k} b^{k} + \sum_{k=0}^{N} \binom{N}{N-k} a^{N-k} b^{k+1} \\ &= \binom{N}{N} a^{N+1} + \sum_{k=1}^{N} \binom{N}{N-k} a^{N+1-k} b^{k} + \sum_{k=0}^{N-1} \binom{N}{N-k} a^{N-k} b^{k+1} + \binom{N}{0} b^{N+1} \\ &= a^{N+1} + \sum_{k=0}^{N-1} \binom{N}{N-k-1} a^{N-k} b^{k+1} + \sum_{k=0}^{N-1} \binom{N}{N-k} a^{N-k} b^{k+1} + b^{N+1} \\ &= a^{N+1} + \sum_{k=0}^{N-1} [\binom{N}{N-k-1} + \binom{N}{N-k}] a^{N-k} b^{k+1} + b^{N+1} \\ &= a^{N+1} + \sum_{k=0}^{N-1} \binom{N+1}{N-k} a^{N-k} b^{k+1} + b^{N+1} \\ &= a^{N+1} + \sum_{k=1}^{N-1} \binom{N+1}{N+1-k} a^{N+1-k} b^{k} + b^{N+1} \\ &= \sum_{k=0}^{N+1} \binom{N+1}{N+1-k} a^{N+1-k} b^{k}. \end{split}$$

Thus the binomial formula also holds for n = N + 1. By MI, the binomial formula is true for all n.

To show $(1+a)^n \ge 1 + na$, note 1, na are the first two terms of the binomial expansion

$$(1+a)^n = \sum_{k=0}^n \binom{n}{k} a^k$$

Since all terms are non-negative, so $(1+a)^n \ge 1+na$.

The next ineq to be proved is $(1+a)^n \ge a^2 n(n-1)(n-2)/3!$. The inequality should be

$$(1+a)^n \ge \frac{n(n-1)(n-2)}{3!}a^3$$

which can also be obtained from the binomial theorem.

(Fun fact: $(1+a)^n \ge a^2 n(n-1)(n-2)/3!$ holds iff n < 13)